Introduction to Database
Systems

CSE 444

Lecture #15
Feb 28 2001

Announcement

3 Project Report due today
¥ HW#4 available on the web
Optional, but you can only benefit from it!
3 Lecture on March 5
[HGiven by Vivek Narasayya (my colleague)
[Material included in Finals

HIDiscussion on Finals postponed to beginning of
lecture on March 7

#Watch posting on mailing list
HLimited exclusion of material

Review of Selected
Material

Insertion in Extensible
Hash Table

¥Insert 1110

Insertion in Extensible
Hash Table

#ENow insert 1010

[i=1 \/v 0(010) [2]
0

1 1(011) [1]
T 1(110), 1(010)

¥Need to extend table, split blocks
38i becomes 2

[i=1 \/v 0(010) [2]
0
1 1(011) [ 1]
S 1(110)
Insertion in Extensible
Hash Table
¥Now insert 1110
[i=2 | 0(010) [1]
01 10(11) 2]
10 10(10)
11 —
11(10) 2]




Insertion in Extensible
Hash Table

#¥Now insert 0000, then 0101

Insertion in Extensible
Hash Table

3BAfter splitting the block

00(10) 2]
i=2 /' 00(00)
01(01) 2]
00 /
01 10(11) [2]
10 10(10)
11 —
11(10) [2]
8
Linear Hash Table
Example
$Insert 1000: overflow blocks...
(01)00 [ +—[(10)00 [ ]
i=2 /' (11)00
(0111 [ ]
00 /
01 (10)10 ]
10

[i=2 ] 0(010) 1]
/ 0(000), 0(101)
00
01 10(11) 2]
10 10(10)
11 —
11(10) 2]
3Need to split block
Linear Hash Table
Example
¥N=3
(01)00 [ ]
i=2 (11)00
/(01)11 BITFLIP |_|
00
% (10)10 [ ]
Linear Hash Table
Extension
#From n=3 to n=4
_ (01)00 | ] (01)00 [ ]
i=2 /‘ (11)00 (11)00
o on1L | ] o 1
o1 =2
b (10)10 [ ] o i
#0nly needtotouch 00 ]
one block (which one ?) % oo (7 |
11

Compressed BitMaps: Run
Length Encoding

¥Represent sequence of I 0-s followed by 1
as a binary encoding of 1

3 Concatenate codes for each run together
RBut, must be able to recover runs

#Scheme
®IB_I = #of bits in binary encoding of I

~Represent as B_I — 1 1-s followed by 0 and
then binary encoding of I




Indexes: Compressed
BitMap

#¥Decode: (11101101001011)

#¥Run-Length: (13,0,3): Why?
$0000000000000110001
3 Note: Trailing 0-s not recovered

Indexes: Multi-column or
Multiple Indexes

EMulti-column index
0N concatenation of field1 and field2
BAsymmetric for B+ Trees
#¥Index AND-ing and OR-ing
&IFor Selection
&AIFor Join

Indexing: When are
indexes useful?

F¥Select Name, Age
FFrom Person

#¥Where Person.salary > 100 K and
Person.state IN [NY, CA, WA]

¥Group By City

Query Execution (Contd.)

Required Reading: 2.3.3-2.3.5, 6.1- 6.7

Suggested Reading: 6.8, 6.9

Review of Last Lecture

2-Way Merge Sort

#8 Each pass we read + write
each page in file.

3 N pages in the file => the
number of passes 2]

=[log, N] +1
#8 So total cost is: 35
leg] Le]

[ mputite
L% ¥k pPasso
[ 1page runs

PASS1

PASS2

2N([log, N]+1)
# Improvement: start with
larger runs

# Sort 1GB with 1MB
memory in 10 passes

PASS3




Multiway Merge-Sort

3Phase one: load M bytes in memory, sort
[Result: runs of length M/R records

I M/R records —

—| [ —

— —
Disk M bytes of main memory Disk

Phase Two

¥Merge M/B — 1 runs into a new run
FResult: runs have now M/R (M/B - 1) records

| | »|Inputl
T2 B ouput)
s mume

Disk M bytes of main memory Disk

Phase Three

¥Merge M/B — 1 runs into a new run
#8Result: runs have now M/R (M/B — 1)? records

| [input1
iz M oupa] ||

— 1
]

Disk M bytes of main memory Disk

Cost of External Merge
Sort

¥ Number of passes:

#Think differently

HGiven B = 4KB, M = 64MB, R = 0.1KB

HPass 1: runs of length M/R = 640000
XIHave now sorted runs of 640000 records

[APass 2: runs increase by a factor of M/B — 1 = 16000
XIHave now sorted runs of 10,240,000,000 = 10 records

[Pass 3: runs increase by a factor of M/B — 1 = 16000
XIHave now sorted runs of 10** records
XINobody has so much data !

3 Can sort everything in 2 or 3 passes !

1+Ml0gy, 5[ NRIMT]

Logical and Physical
Operators

SELECT S.buyer T

FROM Purchase P, Person Q buyer

WHERE P.buyer=Q.name AND
Q.CIty=‘seattIe‘ AND Ci‘y:‘seallle'/\ phone>'5430000"
Q.phone > ‘5430000 ‘

Query Plan: -

* logical tree }m\ (Simple Nested Loops)
« implementation burenase oorson

ChOice at eVery (Table scan) (Index scan)

node

° scheduling of Some operators are from relational

. algebra, and others (e.g., scan, grou
operations arge not. (9 ’ 25)

Estimating the Cost of
Operators

3 Very important for the optimizer (next
week)
¥ Parameters for a relation R
®IB(R) = number of blocks holding R
XIMeaningful if R is clustered
BIT(R) = number of tuples in R
XIE.g. may need when R is unclustered

®IV(R,a) = number of distinct values of the
attribute a




Scanning Tables

#The table is clustered
[ Table-scan: if we know where the blocks are

3 The table is unclustered (e.g. its records
are placed on blocks with other tables)
[“IMay need one read for each record

F¥Also, index scan (discussed later)

Sorting While Scanning

#¥Sometimes it is useful to have the output
sorted

¥ Three ways to scan it sorted:
HIf it fits in memory, sort there
HIf not, use multiway merging

Cost of the Scan Operator

#Clustered relation:
&IB(R); to sort: 3B(R)
¥Unclustered relation
AIT(R); to sort: T(R) + 2B(R)

One-pass Algorithms

GrOUping: ycity, sum(price) (R)

¥Need to store all cities in memory
FAlso store the sum(price) for each city
3 Balanced search tree or hash table
38Cost: B(R)

F¥Assumption: number of cities fits in
memory

Nested Loop Joins
¥ Block-based Nested Loop Join

For each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if r and s join then output(r,s)

29

Nested Loop Joins

R&S Join Result
Hash table for block of S —
D (k <B-1 pages)
o ...t
]
Input buffer for R~ Output buffer




Nested Loop Joins

38 Block-based Nested Loop Join
¥ Cost:
[AIRead S once: cost B(S)

[&=Outer loop runs B(S)/(M-1) times, and each time
need to read R: costs B(S)B(R)/(M-1)

HTotal cost: B(S) + B(S)B(R)/(M-1)

3 Notice: it is better to iterate over the smaller
relation first

¥R D>« S: R=outer relation, S=inner relation

Two-Pass Algorithms
Based on Sorting

3BRecall: multi-way merge sort needs only
two passes !

$Assumption: B(R) <= M?
38 Cost for sorting: 3B(R)

Two-Pass Algorithms
Based on Sorting

GrOUping: ycity, sum(price) (R)
¥Same as before: sort, then compute the
sum(price) for each group

3As before: compute sum(price) during the
merge phase.

¥ Total cost: 3B(R)
#8Assumption: B(R) <= M2

Two-Pass Join Algorithms
Based on Sorting

36 Start by sorting both R and S on the join
attribute:
ACost: 4B(R)+4B(S) (because need to write to disk)
3 Read both relations in sorted order, match
tuples
R Cost: B(R)+B(S)
# Difficulty: many tuples in R may match many in
S
HIIf at least one set of tuples fits in M, we are OK
[Otherwise need nested loop
HTotal cost: 5B(R)+5B(S)
BAssumption: B(R) <= M2, B(S) <= M?

Two-Pass Algorithms
Based on Sorting

JoinRp>< S

3If the number of tuples in R matching
those in S is small (or vice versa) we can
compute the join during the merge phase
¥ Total cost: 3B(R)+3B(S)

$Assumption: B(R) + B(S) <= M?

Query Execution (contd.)
[New Material]




Two Pass Algorithms
Based on Hashing

38 Idea: partition a relation R into buckets, on
disk
38 Each bucket has size approx. B(R)/M

Relation

OUTPUT Partitions
S—

1
1 [ 40 b
2

INPUT
I ,
| [ttt 7 — D
h M-1
B(R) ] M-1

Disk M main memory buffers Disk

8 Does each bucket fit in main memory ?
HAYes if B(R)/M <=M, i.e. B(R) <= M2 a7

Hash Based Algorithms for

)

#¥Recall: d(R) =duplicate elimination
38Step 1. Partition R into buckets

¥Step 2. Apply 6 to each bucket (may read
in main memory)

38Cost: 3B(R)

#$Assumption:B(R) <= M?

Hash Based Algorithms for
Y

FRecall: y(R) =grouping and aggregation
3Step 1. Partition R into buckets

38Step 2. Apply y to each bucket (may read
in main memory)

#8Cost: 3B(R)
$Assumption:B(R) <= M?

Hash-based Join

BR 5gS

¥Recall the main memory hash-based join:

[BIScan S, build buckets in main memory
RThen scan R and join

40

Partitioned Hash Join

R p>gS
38 Step 1:
RHash S into M buckets
Hsend all buckets to disk
38 Step 2
RHash R into M buckets
&Send all buckets to disk
38 Step 3
&Join every pair of buckets

41

Hash-Join

48 Partition both
relations using hash

fn h: R tuples in
partition i will only
match S tuples in
partition i.

<+ Read in a partition

of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Original

Relation
S—

g

INPUT

OUTPUT

oo
h

Partitions

Partitions

ofR&S Hash table for partition
hash Si (< M-1pages)
0o |k | 00 O
g o
oo Di
00 ore it

Disk B main memory buffers

Disk




Partitioned Hash Join

$8Cost: 3B(R) + 3B(S)
F¥Assumption: min(B(R), B(S)) <= M?

43

Hybrid Hash Join
Algorithm

¥Partition S into k buckets

#But keep first bucket S, in memory, k-1
buckets to disk

¥ Partition R into k buckets

[AIFirst bucket R, is joined immediately with S;
ROther k-1 buckets go to disk

#Finally, join k-1 pairs of buckets:
(RZISZ)I (RBIS3)I ey (ersk)

44

Hybrid Join Algorithm

¥How big should we choose k ?
¥Average bucket size for S is B(S)/k

¥Need to fit B(S)/k + (k-1) blocks in
memory
BIB(S)/k + (k-1) <=M
&k slightly smaller than B(S)/M

45

Hybrid Join Algorithm

#How many I/Os ?
8 Recall: cost of partitioned hash join:
=3B(R) + 3B(S)

¥ Now we save 2 disk operations for one bucket

3 Recall there are k buckets

¥ Hence we save 2/k(B(R) + B(S))

3 Cost: (3-2/k)(B(R) + B(S)) =
(3-2M/B(S))(B(R) + B(S))

46

Indexed Based Algorithms

#Recall that in a clustered index all tuples
with the same value of the key are
clustered on as few blocks as possible

‘ aaa‘ ‘aaaaa‘ ‘aa ‘

3Note: book uses another term: “clustering
index”. Difference is minor...

47

Index Based Selection
¥Selection on equality: g,_(R)

#8Clustered index on a: cost B(R)/V(R,a)
#Unclustered index on a: cost T(R)/V(R,a)

48




Index Based Selection

#Example: B(R) = 2000, T(R) = 100,000, V(R, a)
= 20, compute the cost of 5,_,(R)
3 Cost of table scan:
HIf R is clustered: B(R) = 2000 I/Os
HIIf R is unclustered: T(R) = 100,000 I/Os
38 Cost of index based selection:
RIf index is clustered: B(R)/V(R,a) = 100
AIf index is unclustered: T(R)/V(R,a) = 5000
3 Notice: when V(R,a) is small, then unclustered
index is useless

49

Index Based Join

¥R

¥ Assume S has an index on the join attribute

¥ Iterate over R, for each tuple fetch
corresponding tuple(s) from S

¥ Assume R is clustered. Cost:
HIf index is clustered: B(R) + T(R)B(S)/V(S,a)
AIf index is unclustered: B(R) + T(R)T(S)/V(S,a)

Index Based Join

#¥Assume both R and S have a sorted index
(B+ tree) on the join attribute

#$Then perform a merge join (called zig-zag
join)

38Cost: B(R) + B(S)

Optimization

FAlgebraic laws provide alternative
execution plans

¥ Estimate costs of alternative modes of
execution

e Efficiently search the space of alternatives
&ISimplify search by applying heuristics

(without costing)
Xlapply laws that seem to result in cheaper plans

Converting from SQL to
Logical Plans

Select al, ..., an
From R1, ..., Rk
Where C

Moy an(0 (Rl 50 R20« ..x RK))

,,,,,

Converting from SQL to
Logical Plans

Select al, ..., an
From R1, ..., Rk
Where C

Group by b1, ..., bl

rlal,...,an(y bi, ..., bm, aggs (0 C(Rl > R2 00 L
><RK)))




Algebraic Laws

#¥Commutative and Associative Laws
WRUS=SUR, RUGSUT)=(RUS)UT
ERNS=SNR RN(GSNT)=RNS)NT
BR><S = Sp<aR, R (Sp<a T) = (R« S)

> T

¥ Distributive Laws
BmR><a(SUT) = (R<S) U (R< T)

Algebraic Laws

FLaws involving selection:
O cmpc(R) =0 (0 c(R) =0(R)N0oA(R)
0corclR) =0 (R)U o (R)
Ho:(RpqS)=0¢c(R) ><S

XIWhen C involves only attributes of R

oc(R=S)=0.(R)-S
Ho(RUS)=0(R)Uac(S)
BHo.(RNS) =c.(R)INS

Algebraic Laws

$Example: R(A, B, C, D), S(E, F, G)
0rs(REQS) = ?
O A=5 AND G=9 (R‘D>:<E1 S) = ?

Algebraic Laws

#Laws involving projections
Nu(R><S) = My(Mp(R) >« My(S))

XIWhere N, P, Q are appropriate subsets of
attributes of M

Mu(My(R)) = I-IM,N(R)
$Example R(A,B,C,D), S(E, F, G)
Magc(R > S) =5 (My(R) >< My(S))

D=E

Heuristic: Predicate
Pushdown

pname

m
pname

O price>100 AND city=" Seattle” ‘
T o<
maker=name

=<

- o
maker=name C’p, ce>100 c"T:»SSamy

Product Company Product Company

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to loose an important ordering
of the tuples).

59

Determining Join Order

38 Select-project-join

38Push selections down, pull projections up
3¥Hence: we need to choose the join order
$$This is the main focus of an optimizer

10



